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Abstract 

A high-performance simulator is being built 
to support research with neural networks. All 
of our previous simulators have been special 
purpose and would only work with one or two 
types of neural networks. The primary design 
goal of this simulator is versatility; it should 
be able to simulate all known types of neural 
networks. Secondary goals, in order of 
importance, are high speed, large capacity, and 
ease of use. A brief summary of neural 
networks is presented herein which 
concentrates on the design constraints 
imposed. Major design issues are discussed 
together with analysis methods and the chosen 
solutions. 

Although the system will be capable of 
running on most transputer architectures, it 
currently is being implemented on a 40- 
transputer system connected in a toroidal 
architecture. Predictions show a performance 
level nearly equivalent to that of a highly 
optimized simulator running on the SX-2 
supercomputer. 

Introduction 

There are several ways to simulate large 
neural networks. Computationally speaking, 
some of the fastest are via optical computers 
and neural net integrated circuits (hardwired 
VLSI). However, both methods have some basic 
problems that make them unsuitable for our 
research in neural networks. Optical 
computers and hardwired VLSl are still under 
development, and it will be a few years before 

they will be commercially available. Even if 
they were available today, they would be 
generally unsuitable for our work because 
they are very difficult (usually impossible) to 
reconfigure programmably. A non-hardwired 
VLSl neural network chip does not exist today 
but probably will exist within a year or two. If 
done correctly, this would be ideal for our 
simulations. But the state of the art in 
reconfigurable simulators are supercomputers 
and parallel processors. We have a very fast 
simulator running on the SX-2 supercomputer 
(200 times faster than our VAX 11/780 
simulator), but supercomputer CPU time is 

For the purposes of our research, 
several parallel processors were investigated 
including the Connection Machine, the BBN 
Butterfly, and the Ncube and Intel Hypercubes. 
The best performance for our needs was 
exhibited by the INMOS Transputer System. 

Our previous neural network simulators 
have been specific to one particular type of 
algorithm and consequently would not work for 
other types of networks. With this simulator 
our primary goal is to be able to implement all 
types of networks. This wil l  be more 
complicated but is deemed well worth the 
effort. When we are finished, it should be 
possible to implement a different kind of 
network in less than a day. The performance 
reduction will be less than 10 percent for this 
general-purpose capability. 

yfzy costly. 
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Example networks 

To have examples to work with, let us consider 
two very typical neural networks. The first is 
a three-layer feedforward network (fig. 1) 
that is to be trained with the generalized delta 
learning algor i thm (also ca l led  back 
propagation). Rumelhart et. a1.[5] describe this 
algorithm in detail. We will assume that every 
node in one layer is connected to every node in 
its adjacent layer. The network will be trained 
with a number of I10 pairs which are an 
encoding of the associations to be learned. 
The sequence of events to the algorithm can be 
described as follows. First, an input vector is 
placed into the input nodes. The weight values 
of the connections between the input layer and 
hidden layer are then multiplied by the output 
value of the corresponding input nodes and the 
result is propagated forward to the hidden 
layer. These products are collected and 
summed at each node of the hidden layer. Once 
all the nodes in the hidden layer have output 
values, this process is repeated to propagate 
signals from the hidden layer to the output 
layer. When the output layer values are 
computed, an error can be calculated by 
comparing the output vector with the desired 
output value of the I/O pair. 

I n p u t  1 
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Figure 1. - Feedforward network. 

Layer 

With this error computed, the weights at each 
connection between the hidden and the output 
layer can be  adjusted. Next, the error values 
are backpropagated from the output layer to 
the hidden layer. Finally, each weight can be 
adjusted for the connections between the input 
and hidden layers. 

This entire sequence is repeated for 
each successive I/O pair. Note that this 
algorithm has a sequence of events to it. Other 
neural net algorithms do not; instead, every 
node  a n d  connect ion  updates  i t se l f  
con t i n u o us I y [ 2,4]. be 
viewed as a sequence of length one. 

Such a I g o r i t h m s can 

n 

Figure 2. - Hopfield net. 

The second network to be considered is 
the Hopfield network[l] shown in figure 2. it is 
an auto-associative memory in which every 
node is equivalent; i. e., they are all used as 
inputs and outputs. Every node is connected to 
every other node but is not connected to itself. 
The connect ions are bidirect ional  and 
symmetric which means that the weight on the 
connection from node i to node j is the same as 
the weight from node j to node i. 

Other neural networks impose different 
constraints. For example, the connection 
scheme may be totally random, or it may be 
that every ninth node should be connected. The 
equations used are very often different. The 
order of sequencing forward propagation, back 
propagation, weight adjusting, loading inputs, 
etc., also may be dif ferent. Stochastic 
networks update their values probabilistically. 
Yet some generalizations can be made for 
almost all types of networks and these are 
what we have used as the basis of our 
simulator design. 

The f irst generalization is that all 
network computations are local computations. 
In other words, the computations only involve 
a node and the nodes to which it is connected. 
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This is a generally accepted principal in the 
literature and some authors even use it in the 
definition of a neural network. 

The second generalization is that all 
neural computations can be performed by 
applying functions to the state variables of a 
node and its neighbors. While this is a trivial 
restatement of Turing equivalence, the 
emphasis here is that this can be done in a 
computationally efficient manner. 

The third generalization is that any 
computation performed by a node on its input 
signals can be decomposed into parallel 
computations that reduce multiple incoming 
signals to a single signal. This single signal is 
then sent to a node to be combined with single 
signals sent from the other paral lel 
computations. This allows a node computation 
to be broken apart, and the partial results 
forwarded to the node which computes the 
final result. For example, a computation that 
is common to almost all networks is the dot 
product which is a sum of products. This can 
be decomposed into multiple sums of products 
whose results are forwarded and summed. 

Memory Utilization 

For maximum memory efficiency, the target 
design should have one memory cell of the 
minimum possible size for each state variable 
which the network must keep. These state 
variables consist of the values kept for the 
connections and nodes. For a connection in the 
two networks above, one memory cell per 
connection is needed since the only 
information associated with a connection is 
its weight. If the connectivity is like that of 
the above two networks (where everything in 
one layer in connected to everything in another 
layer), the connection information can be 
implicit. At the other extreme, where the 
connectivity is totally random, a additional 
pointer between nodes would have to be kept 
for each connection. 

For nodes, a network like the Hopfield 
network only has to keep one variable: its 
output value. The size of this output value, 
however, can vary. Some networks work with 
8-bit or 16-bit integers while others use 
floating point numbers. Other kinds of 
networks require additional state variables at 

the nodes and connections. Almost all 
networks include added representations to 
ease debugging tasks. Because of these 
differences in size, we have allowed the user 
to specify node variables and their types by 
defining structures in the C language to hold 
the state variable information. This allows all 
the flexibility of C (ie. integers, floats, 
doubles, bytes, bit fields, etc.). 

CPU Utilization 

Since previous simulations have shown that a 
neural net simulator spends almost all of its 
time processing connections (typically, there 
are many more connections than there are 
nodes), an examination of execution speed 
must focus on the calculations done for each 
connection. The operation common to almost 
all neural nets is some function of the dot 
product. This is 

oj = f (  c W -  0. ) I / /  

where Oi is the output of the ith node, Oj is 

the output of the j t h  node, W j j  is the 

connecting weight, and f is some function 
applied to the dot product (note that the time 
spent executing the function f would be 
relatively small in any sizable network since 
there would be few nodes compared to the 
number of connections). Notice that the above 
computation can be thought of as a loop of 
multiply-accumulate operations. For each 
operation the computer must calculate two 
addresses, fetch the two referenced variables, 
multiply them together, and add that product 
to a local register. If  the addresses were 
sequential, calculating a new address could be 
done by incrementing a register. Otherwise, a 
randomly connected network would require 
that the computer fetch a pointer which would 
be used as the address of O j .  

Without the extra pointer, we could 
imagine that the weight, W i i ,  and Oj could be 

fetched in paral lel from two separate 
memories and pushed into a pipeline where 
they would be multiplied and summed. Using 
today's electron ic components, memory 
fetching would be the bottleneck with memory 
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access times of 100 nanoseconds (ns) per 
fetch. Thus the execution rate of the 
fetch-multiply-store loop above would be on 
the order of 100 ns. If the weight and the 
output could not be fetched in parallel, the 
loop would take 200 ns. As a result the best 

can be hoped for, even with a custom made 
VLSl chip, is about 200 ns per cycle through 
the loop. Of course, this can be done in parallel 
with multiple chips. Said another way, this is 
5 million connections per second per memory 
bank. Since economic and time constraints 
precluded the design of a VLSl chip, the best 
commercially available hardware was sought. 

Transputer Architecture 

A transputer[3] is a 32-bit, 10 million- 
instruction-per-second (MIPS), single-chip 
microcomputer manufactured by INMOS, Great 
Britain's leading semiconductor manufacturer. 
Transputers are designed to be components in 
large parallel processing systems and have 
hardware multitasking for sub-microsecond 
task switching times. Each transputer has four 
10-Megabit per second, full duplex serial links. 
We purchased the INMOS transputer system 
ITEM 4000, a 40 transputer parallel processor 
with capabilities of 400 MIPS, 50 MFLOPS, and 
10 Mbytes total local memory (256K per 
processor). An additional transputer plugs into 
an IBM personal computer (PC) advanced 
terminal (AT) with 2 Mbytes of memory. This 
transputer uses the PC AT as its I/O 
subsystem. Yet another transputer controls a 
512x51 2x8 graphics board. The development 
system has both the C language and OCCAM, the 
parallel processing language of the transputer. 

Decomposition of the Matrix 

There are several ways to divide the nodes and 
connections of the network among the 
processors. One scheme is to copy the node 
variables to all processors. This makes 
allocation simpler, but it can use a lot of 
memory. We have chosen to decompose the 
connection matrix (fig. 3) into partitions that 
require only a subset of node variables. 

H 

0 

Figure 3. - Connection matrix. 

The connection matrix is formed by having one 
row and one column for each node in the 
network. Assume that each row of the matrix 
represents a "from" node (the source of a 
connecting link) and each column a "to" node. 
For every connection, a mark is placed at the 
intersection of its from and to nodes. Figure 3 
shows this for a three-layer feedforward 
network where all of the input nodes are 
connected to all of the hidden nodes and all of 
the hidden nodes are connected to all of the 
output nodes. The nodes and connections are 
then allocated to processors by sectioning the 
covered areas of this matrix into the same 
number of regions as processors. A processor 
associated with a region must have access to 
both the from nodes represented by the rows 
of its region and to the to nodes represented 
by the columns. When a node is unidirectionally 
transmitting a signal from one node to 
another, the state variables of the from node 
are not the same as the state variables of the 
to node (in a typical case, the from node must 
have a variable for its output value but the to 
node must have an accumulator for its dot 
product). Therefore, the state variables are 
separated into "exported values" and "partial 
results," and only the necessary variables are 
kept in a processor. Thus the memory 
allocation for copies of node variables 
required by a processor when receiving a 
region is equal to the height of the region (in 
number of nodes) times the number of bytes 
for the from node "exported" state variables 
plus the width of the region times the number 
of bytes for the to node "partial result" state 
variables. Let us assume that the number of 
bytes for from nodes is F, the number for to 
nodes is T, the number of nodes in the network 
is N and the number of processors we have is 
p . Let US next assume the matrix is fully 
covered, and that we have Some number of 
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processors that is a perfect square. If we 
leave enough space for every node in a 
processor the number of bytes allocated is ( N F  
+ NT ) P  . However, by partitioning the matrix, 
the number of bytes allocated is (NF + NT )P  
/dP  (again, assuming square regions). This is 
a factor of dP savings. When the allocations 
are contiguous groups of nodes, node variable 
structures can be stored in an array with 
minimal overhead both in access time and 
memory. Other schemes would necessitate 
pointer or hash table overhead. 

Load Balancing 

A basic problem with most parallel processing 
schemes is balancing the load evenly so that 
all processors can be working most of the 
time. If one processor is slower than the rest, 
all of the other processors have to wait for it 
to finish before they can all synchronize and 
continue. Since the time of execution is 
proportional to the number of connections that 
a processor must process, our matrix 
decomposition scheme solves this if equal 
areas can be assigned to the processors. If the 
matrix is fully covered, this is easy. But when 
it is covered with many irregularly sized 
areas, it is more difficult. We are developing a 
heuristic method for doing this which we refer 
to as our load balancing algorithm. Because 
processes may be sequenced, as in the 
generalized delta algorithm, it is necessary to 
have a separate matrix for each asynchronous 
phase group of connections. An asynchronous 
phase group is defined as a set of connections 
where all processing can be done in parallel. In 
the generalized delta rule described above, 
there are two phase groups: input to hidden and 
hidden to output. The user specifies the phase 
when he defines the group. 

Mapping Macros 

To get a system up and running in a reasonable 
amount of time, the user is required to modify 
a few sections of program and recompile the 
source to create a network with his 
specifications. This code modification method 
offers total flexibility. The user specifies the 
network by calling functions. He also must 
specify the structures to hold the state 

variables of nodes and connections. To specify 
the equations to be applied, a "map- 
connections" macro is provided which expands 
to the actual code that goes in each of the 
slave processors. This macro handles all of the 
addressing and hands the user pointers to the 
connection variables and to its two adjacent 
node variables. The code that he provides can 
do whatever he wants to the state variables. It 
can propagate a signal forward, backward, or 
both ways. It could initialize the weights. It 
could save the weights to a file or recover 
them. A similar "map-nodes" macro is also 
provided. The macros create functions that are 
called with an argument of the node group or 
connection group to which the user wants the 
function applied. This macro approach expands 
to code that is 90 percent as run-time- 
efficient as can be handcoded. To execute the 
sequencing of the generalized delta rule the 
user would call a predefined function that 
loads the inputs. The user would then 
broadcast a message to all processors that 
would invoke his macro-defined function with 
an argument of the input to hidden connection 
group. This function executes in parallel in all 
of the slave processors. It first checks to be 
sure it has connections from the input to 
hidden connection group; if not it just 
responds "done" to the master. The user then 
broadcasts to invoke his function that was 
defined with "map nodes" to process the 
hidden nodes. The same is done from the hidden 
nodes to output nodes. Backpropagating is very 
Similar but the user invokes dif ferent 
functions. He probably would name this routine 
"t r a i n-o n e-i n p u t-o ut  p u t-p a i r " it 
inside a loop to do all of his training. 
Likewise, the user might define a function 
called "output-of" that takes an input vector 
as argument, propagates it through the 
network, and returns an output vector. I f  the 
user used symbolic constants in his functions, 
he would only have to change constants such 
a s  N u m b e r - o f - i n p u t - n o d e s ,  
N u m b e r - o f - h i d d e n - n o d e s  a n d  
Number-of-output-nodes to change their 
sizes. Even architectural changes can be made 
with small changes in the program (such as 
connecting all input nodes to all output nodes 
as well). Although this approach allows the 
total flexibility that many users want, others 

and cal I 
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wil l  d is l ike t inkering with the code. 
Ultimately, a much friendlier user interface 
will be provided as well. We are considering 
both a language and menu-driven graphics for 
specification of the network. 

Program Structure 

The system architecture we are using is 
master-slave. The master transputer in the 
IBM PC acts as an interpreter of the commands 
from the user interface. In turn, the master 
issues commands to the slaves whose sole 
task is to interpret commands from the 
master. The slaves merely look the command 
up in a table (index an array) and execute the 
function associated with that command (whose 
pointer is stored in the table). The argument to 
the function is a pointer to the buffer that 
holds the remainder of the command message 
which contains the arguments to the function. 

Synchronization 

Synchronization of the master and slave 
processes is accomplished by having the 
slaves respond to every command. When the 
master gets as many responses as there are 
processors, he can continue. 

Communication 

Since processors are only connected in a point 
to point fashion, a message between two 
non-adjacent processors must be relayed by 
intermediate processors. Our communications 
process inside each processor continually 
waits for a message to come in from any of 
the four input ports and, when one comes in, it 
reads the address in the message and looks in 
a table (indexes an array) to determine the 
appropriate output channel for retransmitting 
the message (a channel is a logical port; it 
may be a physical port or a location in 
m e m o r y [ 3 ] ) .  Buffering is used in each 
processor to avoid deadlock and to smooth 
irregularities in transmission rates. 

Even though it reduces the total amount 
of communication required, the method of 
decomposing the matrix means that some 
nodes are split across processors and that the 
partial results accumulated at several of the 

processors must be shipped to a central 
location (for this node) to be combined. This 
location is called the home processor of the 
node. Each processor is home for a roughly 
equal number of nodes that are in the same 
asynchronous processing phase. When a 
map-nodes function is called, it is applied in 
the home processor of the node with the 
variables which it contains. These are 
referred to as the static variables of the node. 
Since they do not have multiple copies, the 
static variables use little memory. 

So the bulk of the communications 
results from processors sending partial 
results to the home nodes and from home nodes 
exporting these processed values to several 
processors. Analyzing the time this will take 
is very difficult, but there are two potentially 
l imiting factors that we can analyze 
individually: the limit set by the serial links 
and the limit set by the CPU cycles required to 
buffer and relay messages. Surprisingly, the 
CPU time is the limiting factor. The analysis 
is as follows. 

The number of processors that ship a 
message home and that the home node ships to 
can be seen by examining the sections of the 
connection matrix after the areas have been 
carved out. Let us assume that a fully covered 
matrix has been evenly partitioned into 5 rows 
by 8 columns and that each of the 40 
processors gets 1 partition. From a home node 
processor's point of view, five processors 
must ship their partial results to the home 
node processor and this processor must 
combine these results and ship this new output 
value to eight processors (let us assume the 
home processor is not one of these). This 
means that there are 14 messages shipped for 
every node. It can be determined by 
enumeration that the average distance 
between processors in our array (fig. 4) is 3.5 
l inks. 
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second. When this is distributed over the 40 
Drocessors. each one must do 416.300 S1 aves 

Graphics Transput 

Figure 4. - Processor configuration 

Each of these 14 messages must travel over 
3.5 links, yielding 3.5 (5 + 8) = 46 
transmissions per node. If each message is 12 
bytes (96 bits) long, this is 96 * 46 = 4416 
bits transmitted per node. Since each serial 
link is 10 million bits per second and there are 
80 full duplex serial links in our network, 
there are 2 80 * 10million = 1600 million 
transmitted bits per second possible (This 
assumes that every bit slot is being used, 
which is not likely; but if adequate buffering 
is available and the CPU retransmit speed is 
sufficiently fast, this is almost the case (> 50 
percent of this)). Dividing this by 4416 bits 
gives 362,318 nodes that could transmit each 
second. This means that the serial-link is 
limited to about 362,000 nodes per second. 
This could become the limiting factor in 
networks with large numbers of nodes and few 
connections per node; but, typically, there will 
only be a few thousand nodes in a network so 
other things will probably limit throughput 
before the serial links do. 

To examine the CPU speed requirement, 
remember that there are 46 transmissions per 
node. For each of these, a processor must 
receive the message, buffer it, determine the 
port to which it should be sent, and then 
retransmit it. The transputer direct memory 
access (DMA) hardware handles the receiving 
and transmitting concurrently. All the CPU 
must do is copy the received message to a 
buffer, determine where to send it, and later 
copy it from the buffer. There are 46 
transmissions per node, and a serial-link- 
limited rate of 362,000 nodes per second is 46 

362,000 = 16,652,000 transmissions per 

transmissions or one transmission every 2.4 
microseconds (ps). Yet summing instruction 
execution times shows that the transputer 
will actually take about 10 ps to retransmit 
for a rate of 81,600 nodes per second. This is 
about four times slower than the serial link 
rate. So the speed of processing networks on 
this system is still CPU limited. 

It takes about 2 ps to fetch operands 
and do a multiply accumulate on our 20 MHZ 
transputer. This is what must be done at each 

connection when propagating forward. Forty 
t ransputers can  process 20 mi l l ion 
connections per second. The time to propagate 
an input forward to get an output from a 
feedforward network can be estimated by 
(number-of-connections / 20 million) + 
(number-of-nodes / 81,600) since these two 
terms represent 90 percent of the processing 
in typical networks. 

The 2 ps required for each fetch- 
multiply-accumulate loop is about 10 times 
slower than what would be possible with a 
handcrafted VLSl chip but is significantly 
f a s t e r  t h a n  m o s t  o t h e r  3 2 - b i t  
microprocessors. This, along with the 
capability of packing several transputers in a 
very small space, makes a transputer array a 
very cost effective solution to neural network 
simulation with off the shelf components. 

Conclusion 

We have discussed the constraints imposed by 
neural networks on simulation. We have shown 
what is achievable in terms of memory 
efficiency and simulation speeds and have 
compared our design to this. We have discussed 
a technique for partitioning a neural network 
to minimize memory waste on a parallel 
machine. The program structure also was 
discussed. The communication network was 
analyzed to determine what the costs of 
communication are. The resulting design gives 
us a neural network simulator that has a 
performance level nearly equivalent to the 
highly optimized simulator we have running on 
the SX-2 supercomputer for a cost equivalent 
to 2 days of CPU time on that supercomputer. 
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